Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733562

ABSTRACT

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.

2.
Food Chem ; 448: 139157, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569411

ABSTRACT

About half of the world's population is infected with the bacterium Helicobacter pylori. For colonization, the bacterium neutralizes the low gastric pH and recruits immune cells to the stomach. The immune cells secrete cytokines, i.e., the pro-inflammatory IL-17A, which directly or indirectly damage surface epithelial cells. Since (I) dietary proteins are known to be digested into bitter tasting peptides in the gastric lumen, and (II) bitter tasting compounds have been demonstrated to reduce the release of pro-inflammatory cytokines through functional involvement of bitter taste receptors (TAS2Rs), we hypothesized that the sweet-tasting plant protein thaumatin would be cleaved into anti-inflammatory bitter peptides during gastric digestion. Using immortalized human parietal cells (HGT-1 cells), we demonstrated a bitter taste receptor TAS2R16-dependent reduction of a H. pylori-evoked IL-17A release by up to 89.7 ± 21.9% (p ≤ 0.01). Functional involvement of TAS2R16 was demonstrated by the study of specific antagonists and siRNA knock-down experiments.


Subject(s)
Helicobacter pylori , Interleukin-17 , Plant Proteins , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Taste , Digestion , Peptides/pharmacology , Peptides/chemistry , Peptides/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Helicobacter Infections/immunology , Cell Line
3.
Nutrients ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337658

ABSTRACT

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Subject(s)
Gastrointestinal Microbiome , Nasturtium , Tropaeolum , Female , Humans , Isothiocyanates/pharmacology , Bacteria , Escherichia coli , Metabolome
4.
J Agric Food Chem ; 71(22): 8633-8647, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232935

ABSTRACT

Amino acids and acylcarnitines are important biomarkers of the body's energy state and can be used as diagnostic markers of certain inborn errors of metabolism. Few multianalyte methods for high-throughput analysis in serum exist for these compounds, but micromethods suitable for use in young children and infants are lacking. Therefore, we developed a quantitative high-throughput multianalyte hydrophilic interaction liquid chromatography-tandem mass spectrometry method preceded by a derivatization-free sample preparation using minimum amounts of serum (25 µL). Isotopically labeled standards were utilized for quantification. Forty amino acids and amino acid derivatives and 22 acylcarnitines were detected by applying a multiple reaction monitoring mode within a 20 min run. The method was comprehensively validated, comprising linearity, accuracy, (intraday/interday) precision, and quantitation limits, of which the latter ranged from 0.25 to 50 nM for acylcarnitines and from 0.005 to 1 µM for amino acids and their derivatives. Application of the method to 145 serum samples of three- to four-month-old healthy infants showed excellent reproducibility for multiday analyses and enabled simultaneous amino acid and acylcarnitine profiling in this age group.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Child , Infant , Humans , Child, Preschool , Amino Acids/metabolism , Tandem Mass Spectrometry/methods , Reproducibility of Results , Carnitine
5.
J Agric Food Chem ; 70(21): 6503-6518, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35593506

ABSTRACT

Soy sauce, one of the most common Asian fermented foods, exhibits a distinctive savory taste profile. In the present study, targeted quantitation of literature-known taste compounds, calculation of dose-over-threshold factors, and taste re-engineering experiments enabled the identification of 34 key tastants. Following the sensoproteomics approach, 14 umami-, kokumi-, and salt-enhancing peptides were identified for the first time, with intrinsic taste threshold concentrations in the range of 166-939 µmol/L and taste-modulating threshold concentrations ranging from 42 to 420 µmol/L. The lowest taste-modulating threshold concentrations were found for the leucyl peptide LDYY with an umami- and salt-enhancing threshold of 42 µmol/L. Addition of the 14 newly identified peptides to the taste recombinate (aRecDipeptides) increased the overall taste intensity and mouthfulness of the recombinate, and comparison with the authentic soy sauce confirmed the identification of all key tastants. Finally, these data as well as the quantitative profiling of several (non)-fermented foods highlight the importance of fermentation with respect to taste formation. On the basis of this knowledge, microorganisms with specific digestion patterns may be used to tailor the taste profile and especially the salt taste sensation of soy sauces.


Subject(s)
Fermented Foods , Soy Foods , Fermentation , Peptides/chemistry , Sodium Chloride, Dietary , Taste
6.
J Agric Food Chem ; 69(44): 13173-13189, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34723522

ABSTRACT

Application of a sensitive UHPLC-MS/MSMRM method enabled the simultaneous quantitation of 23 sweet-, licorice-, and bitter-tasting saponins in Glycyrrhiza glabra L., Glycyrrhiza uralensis Fisch., different licorice plants and root compartments, processed licorice, as well as different Glycyrrhiza spp. The combination of quantitative data with sweet, licorice, and bitter taste thresholds led to the determination of dose-over-threshold factors to elucidate the sweet, licorice, and bitter impact of the individual saponins with and without mycorrhiza symbiosis to evaluate the licorice root quality. Aside from glycyrrhizin (1), which is the predominant sweet- and licorice-tasting saponin in all licorice samples, 20 out of 22 quantitated saponins contributed to the taste profile of licorice roots. Next to sweet-/licorice-tasting glycyrrhizin (1), 24-hydroxy-glycyrrhizin (9), 30-hydroxy-glycyrrhizin (11), and 11-deoxo-24-hydroxy-glycyrrhizin (14) as well as licorice tasting saponins 20α-galacturonic acid glycyrrhizin (17), 24-hydroxy-20α-glycyrrhizin (21), and 11-deoxo-glycyrrhizin (12) were determined as key contributors to licorice root's unique taste profile. A quantitative comparison of 23 saponins as well as 28 polyphenols between licorice roots inoculated with arbuscular mycorrhiza fungi and controls showed that important taste-mediating saponins were increased in mycorrhizal roots, and these alterations depended on the growth substrate and the level of phosphate fertilization.


Subject(s)
Glycyrrhiza , Mycorrhizae , Saponins , Plant Roots , Symbiosis , Tandem Mass Spectrometry , Taste
7.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681798

ABSTRACT

Salix cortex-containing medicine is used against pain conditions, fever, headaches, and inflammation, which are partly mediated via arachidonic acid-derived prostaglandins (PGs). We used an activity-guided fractionation strategy, followed by structure elucidation experiments using LC-MS/MS, CD-spectroscopy, and 1D/2D NMR techniques, to identify the compounds relevant for the inhibition of PGE2 release from activated human peripheral blood mononuclear cells. Subsequent compound purification by means of preparative and semipreparative HPLC revealed 2'-O-acetylsalicortin (1), 3'-O-acetylsalicortin (2), 2'-O-acetylsalicin (3), 2',6'-O-diacetylsalicortin (4), lasiandrin (5), tremulacin (6), and cinnamrutinose A (7). In contrast to 3 and 7, compounds 1, 2, 4, 5, and 6 showed inhibitory activity against PGE2 release with different potencies. Polyphenols were not relevant for the bioactivity of the Salix extract but salicylates, which degrade to, e.g., catechol, salicylic acid, salicin, and/or 1-hydroxy-6-oxo-2-cycohexenecarboxylate. Inflammation presents an important therapeutic target for pharmacological interventions; thus, the identification of relevant key drugs in Salix could provide new prospects for the improvement and standardization of existing clinical medicine.


Subject(s)
Inflammation/drug therapy , Salicylates/isolation & purification , Salix/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Chromatography, Liquid , Dinoprostone/metabolism , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Pain/drug therapy , Phytotherapy/methods , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Salicylates/analysis , Salicylates/pharmacology , Tandem Mass Spectrometry
8.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34451906

ABSTRACT

Bioactive plant compounds and extracts are of special interest for the development of pharmaceuticals. Here, we describe the screening of more than 1100 aqueous plant extracts and synthetic reference compounds for their ability to stimulate or inhibit insulin secretion. To quantify insulin secretion in living MIN6 ß cells, an insulin-Gaussia luciferase (Ins-GLuc) biosensor was used. Positive hits included extracts from Quillaja saponaria, Anagallis arvensis, Sapindus mukorossi, Gleditsia sinensis and Albizia julibrissin, which were identified as insulin secretion stimulators, whereas extracts of Acacia catechu, Myrtus communis, Actaea spicata L., Vaccinium vitis-idaea and Calendula officinalis were found to exhibit insulin secretion inhibitory properties. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) were used to characterize several bioactive compounds in the selected plant extracts, and these bioactives were retested for their insulin-modulating properties. Overall, we identified several plant extracts and some of their bioactive compounds that may be used to manipulate pancreatic insulin secretion.

9.
J Agric Food Chem ; 69(32): 9202-9207, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34342446

ABSTRACT

Proteins and, in particular, plant-based proteins are becoming more and more important in the face of future challenges, resulting from continuous population growth, the imbalance between malnutrition and overweight/obesity, and environmental changes. Recent developments open new avenues for improving the quality and sustainable production of plant proteins. Increasing knowledge on the key drivers of the off-flavor of plant proteins, which currently limit their use, supports new strategies to reach full flavor experience, thus enhancing consumer acceptance. Current limitations and future directions for improving the flavor profiles of plant-based proteins are discussed in this perspective.


Subject(s)
Plant Proteins , Taste , Flavoring Agents
10.
Int J Mol Sci ; 22(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201817

ABSTRACT

The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1ß- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1ß, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aspirin/pharmacology , COVID-19 Drug Treatment , COVID-19/immunology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/chemistry , Benzyl Alcohols/metabolism , COVID-19/virology , Caco-2 Cells , Cyclooxygenase 2/drug effects , Cytokines/metabolism , Dinoprostone/metabolism , Glucosides/metabolism , HT29 Cells , Humans , Inflammation , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides/immunology , Plant Bark/chemistry , Plant Extracts/chemistry , SARS-CoV-2/immunology
11.
J Agric Food Chem ; 69(31): 8768-8776, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34324814

ABSTRACT

An ultra-high-performance liquid chromatography-differential ion mobility (DMS)-tandem mass spectrometry method was developed to quantify 14 bitter-tasting lipids in 17 commercial pea-protein isolates (Pisum sativum L.). The DMS technology enabled the simultaneous quantification of four hydroxyoctadecadienoic acid isomers, namely, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid (5), (10E,12E)-9-hydroxyoctadeca-10,12-dienoic acid (6), (9Z,11E)-13-hydroxyoctadeca-9,11-dienoic acid (7), and (9E,11E)-13-hydroxyoctadeca-9,11-dienoic acid (8). Based on quantitative data and human bitter taste recognition thresholds, dose-over-threshold factors were determined to evaluate the individual lipids' bitter impact and compound classes. The free fatty acids α-linolenic acid (10) and linoleic acid (13), as well as the trihydroxyoctadecenoic acids, especially 9,10,11-trihydroxyoctadec-12-enoic (3), and 11,12,13-trihydroxyoctadec-9-enoic acids (4), were shown to be key inducers to bitterness in the isolates. Additionally, the impact of 1-linoleoyl glycerol (9) on the bitter taste could be shown for 14 of the 17 tested pea-protein isolates.


Subject(s)
Pea Proteins , Chromatography, High Pressure Liquid , Humans , Lipids , Pisum sativum , Taste
12.
Front Plant Sci ; 12: 579820, 2021.
Article in English | MEDLINE | ID: mdl-33868322

ABSTRACT

Willow bark is traditionally used for pharmaceutical purposes. Evaluation is so far based on the salicylate content, however, health promoting effects of extracts might be attributed to the interaction of those salicylates with other compounds, which support and complement their action. So far, only S. purpurea, S. daphnoides, and S. fragilis are included in pharmaceutical extracts. Crossing with other species could result in a more diverse secondary metabolite profile with higher pharmacological value. With the help of targeted inter- and intraspecific crossing, new chemotypes were generated, whereby nine different Salix genotypes (S. alba, S. daphnoides, S. humboldtiana, S. lasiandra, S. nigra, S. pentandra, S. purpurea, S. x rubens, S. viminalis) were included in the study. Based on substances known for their health promoting potential and characteristic for Salix (selected phenolic compounds including salicylates), a targeted metabolomics analysis and clustering of 92 generated Salix clones was performed revealing four different cluster/chemoprofiles. In more specific, one group is formed by S. daphnoides clones and inter- and intraspecific hybrids, a second group by S. viminalis clones and inter- and intraspecific hybrids, a third group generally formed by S. alba, S. pentandra, S. x rubens, and S. lasiandra clones and hybrids, and a fourth group by S. purpurea clones and inter- and intraspecific hybrids. Clustering on the basis of the selected phenolic compounds can be used for identifying Salix clones with a different compound profile. New combinations of secondary plant metabolites offer the chance to identify Salix crosses with improved effects on human health.

SELECTION OF CITATIONS
SEARCH DETAIL
...